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1 Bayesian state-space model

A state-space model is a hierarchical statistical model used to infer time-dependent pa-

rameters related to both observed and hidden parameters from available data [1, 2]. We

employ Bayesian methods, making this a Bayesian state-space model (BSSM), by sam-

pling from the posterior distribution of model parameters using Markov Chain Monte

Carlo (MCMC) and the Python package PyMC in particular [3]. Below we describe the

elements of our BSSM using conventional terminology for this type of statistical model

when employed in biological and epidemiological research [1]. In other fields, this type of

approach can be described as a Kalman filter (for Gaussian response) or, more generally,

as a hidden Markov model [2]. Limiting ourselves to the terminology of [1], the frame-

work is made up of data, process and parameter models. Below we describe each of these

elements in detail, starting with the data model. Also see figure 1 in the main manuscript

for a schematic of all of the relations that make up this statistical model.

1.1 Data model

As described in the main text, there are two types of data available for our joint analysis

of swine influenza: monthly counts for virus isolation and seropositivity. We employ the

index t to indicate the month of interest. The serological data consist of the number of

animals tested Ns(t) as well as the number of positive results ns(t). For the purposes of

this analysis, we use a conventional threshold and define a titer greater than or equal to

1:40 to any test antigen as seropositive. Given the sample size and unknown probability of

being seropositive ps(t), the observed count for a given month has a Binomial distribution:

P (ns(t)|ps(t), Ns(t)) = Bin(ps(t), Ns(t)). The likelihood of all available serological data,

which we denote {ns(t)}t∈Ts
, is given by:
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P ({ns(t)}t∈Ts
|{Ns(t)}t∈Ts

, {ps(t)}t)

=
∏

t∈Ts

Bin(ps(t), Ns(t)) , (S1)

where we use Ts to label the subset of months where serology counts are available. The

probability of all observed serology data is conditioned on the number of samples taken

and the probability of seropositivity for all months (even those without data), denoted

{ps(t)}t, that will be specified by part of the process model.

The data model for virus isolation is slightly more complex due to the additional

information about the viral strain, which we designate i. Possible strains include classical

swine (CS), triple reassortant (TR), Eurasian avian-like (EA), pandemic H1N1 (pH),

and seasonal human H1N1 (Hu). The number of animals tested for virus each month is

denoted Nv(t) and the number of samples testing positive for strain type i is ni(t). The

complete virus isolation sample for a particular month is designated {ni(t)}i to indicate

the set of counts for all strain types. Given the probability of virus isolation pv(t) (of

any strain) and the probability that the isolate is of type i given a successful isolation,

denoted pi|v(t), the probability of isolation of type i is given by the product pi,v(t) =

pi|v(t)× pv(t). Using these definitions, the number of isolates of type i for a given month

t has a multinomial distribution: P ({ni(t)}i|pi,v(t), Nv(t)) = Mult(pi,v(t), Nv(t)). The

likelihood of virus isolation data for all available months, denoted Tv, is given by:
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P ({ni(t)}i,t∈Tv
|{Nv(t)}t∈Tv

, {pi,v(t)}i,t)

=
∏

t∈TV

Mult(pi,v(t), Nv(t)) . (S2)

As with the serology data, this expression gives the probability of all isolation data, con-

ditioned on the number of samples taken and the complete set of strain-specific isolation

probabilities {pi,v(t)}i,t. As discussed above, the monthly probability pi,v(t) is made up of

two factors: pv(t) and pi|v(t) that will be part of the process model. Using these elements,

the likelihood given in equation (S2) can be calculated.

Finally, the likelihood for all observed data can be written as the product of equations

(S1) and (S2), resulting in the form:

likelihood = P ({ns(t)}t∈Ts
|{Ns(t)}t∈Ts

, {ps(t)}t)

× P ({ni(t)}i,t∈Tv
|{Nv(t)}t∈Tv

, {pi,v(t)}i,t) . (S3)

1.2 Process model

The process model provides a connection between the parameters conditioned on in the

data model and the hidden dynamics of influenza exposure on farms and during transport

that are the primary focus of our inference problem. We start by considering the monthly

probabilities (i) that a sampled pig was exposed during transportation to and holding at

the abattoir, pt(t), and (ii) that a sampled pig was exposed on the farm pf (t). We define

transport exposure to be within the week before sampling, such that infection during

transport is likely to lead to virus isolation [4, 5]. Farm exposure reflects transmission
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earlier in life, and corresponds to the lifetime hazard of exposure up to one week prior to

sampling, as this is the time needed to develop antibodies to influenza following infection.

We assume that antibodies developed due to influenza exposure will still be measurable

at the time of sampling on average. This is a reasonable assumption, even if titers decline

with time, because pigs sent to the abattoir range from four to six months in age.

In the development of the process models, we employ scale parameters that control the

variance in statistical relations. For example, exposure of näıve animals during transport

may not translate to virus isolation in some cases, due to individual variation among hosts

or false negative assay results. Further variation may arise because random sub-samples

of the abattoir population obtained each month may be more or less representative of

the population of interest. The scale parameters enable variation from all sources to be

represented in the model. Each scale parameter is inferred from the data, as described in

the next section, to ensure that the degree of variation is appropriate.

Using this general framework, we allow for the possibility that pt(t) and pf (t) do

not correspond precisely to the proportion of samples that are positive by virological or

serological testing. On average, though, we do expect that the probability of seropositive

samples will be equal to pf (t). The scale factor sS accounts for variation due to unknown

factors, as discussed above, resulting in the following expressions for the expectation and

variance of seropositivity as a function of farm exposure:

E[ps(t)|pf (t), sS] = pf (t) , (S4)

Var[ps(t)|pf (t), sS] =
pf (t)

(

1− pf (t)
)

1 + sS
. (S5)

The form of equation (S5) shows that as the scale sS increases, the correspondence between
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farm exposure and seropositivity increases (i.e. the variance decreases). This inverse

relationship between scale parameter value and variance is found throughout the BSSM.

We assume that the probability of virus isolation depends on two factors: (i) the

absence of protective immunity arising from exposure on the farm, and (ii) exposure during

transportation and holding before slaughter. We denote the probability corresponding to

this combination as p
✁f,t
(t) = (1 − pf (t)) × pt(t) and write the expectation and variance

for the probability of virus isolation as a function of both transport and farm exposure:

E[pv(t)|p✁f,t(t), sV ] = p
✁f,t
(t) (S6)

Var[pv(t)|p✁f,t(t), sV ] =
p
✁f,t
(t)

(

1− p
✁f,t
(t)

)

1 + sV
(S7)

Again, the variance in the correlation between virus isolation and transport exposure

of näıve animals depends inversely on scale parameter sV . As this scale increases, the

correspondence increases as given in equation (S7).

For a given month, the desired relations between probabilities related to observed data

and probabilities related to unobserved exposures, expressed by equations (S4-S7), can

be obtained using the Beta distribution [6], as follows:

P
(

ps(t)|pf (t), sS
)

= Beta
(

pf (t)sS, (1− pf (t))sS
)

, (S8)

P
(

pv(t)|p✁f,t(t), sV
)

= Beta
(

p
✁f,t
(t)sV , (1− p

✁f,t
(t))sV

)

. (S9)

The probability of virus isolation and seropositivity for all months considered, t ∈ T (this

includes months with no data), can be written as the following products:
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P
(

{ps(t)}t|{pf (t)}t, sS
)

=

∏

t∈T

Beta
(

pf (t)sS, (1− pf (t))sS
)

,
(S10)

P
(

{pv(t)}t|{p✁f,t(t)}t, sV
)

=

∏

t∈T

Beta
(

p
✁f,t
(t)sV , (1− p

✁f,t
(t))sV

)

.
(S11)

We can write the probability of seropositivity and virus isolation for all months under

consideration, given the complete set of transport and farm exposure probabilities and

both scale factors, as the product of equations (S10) and (S11):

process1 = P
(

{ps(t)}t|{pf (t)}t, sS
)

× P
(

{pv(t)}t|{p✁f,t(t)}t, sV
)

. (S12)

This grouping, which we call process1, is convenient but arbitrary. Later, this element

of the process model will be one factor in the joint distribution over all data and model

parameters needed for MCMC sampling of the posterior distribution.

1.2.1 Markov dynamics of process model

In the final major component of the process model, we consider the month-to-month

dynamics of (i) transport exposure pt(t), (ii) farm exposure pf (t), and (iii) the probability

of isolating a particular strain, given successful virus isolation, pi|v(t) . We assume these

processes obey Markov dynamics, and require that probabilities for consecutive months

be the same on average while allowing for gradual change over time. Again, we introduce
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scale factors for these associations (now in time) that are inferred as part of the parameter

model. For transport exposure this assumption results in the form:

E[pt(t+ 1)|pt(t), sT ] = pt(t) , (S13)

Var[pt(t+ 1)|pt(t), sT ] =
pt(t)(1− pt(t))

sT + 1
. (S14)

For farm exposure we have:

E[pf (t+ 1)|pf (t), sF ] = pf (t) (S15)

Var[pf (t+ 1)|pf (t), sF ] =
pf (t)(1− pf (t))

sF + 1
. (S16)

And, finally for isolation types we have:

E[pi|v(t+ 1)|pi|v(t), sI ] = pi|v(t) , (S17)

Var[pi|v(t+ 1)|pi|v(t), sI ] =
pi|v(t)(1− pi|v(t))

sI + 1
, (S18)

Cov[pi|v(t+ 1), pj|v(t+ 1)|pi|v(t), pj|v(t), sI ] =

−
pi|v(t)pj|v(t)

sI + 1
.

(S19)

The covariance term applies for i 6= j and reflects the fact that an increase in the proba-

bility of isolating one strain, decreases the probability of finding a different strain (given

a fixed overall probability of virus isolation).
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We obtain the desired Markov properties using a Beta distribution to describe the

temporal evolution of transport and farm exposure probabilities:

P
(

pt(t+ 1)|pt(t), sT
)

= Beta
(

pt(t)sT , (1− pt(t))sT
)

, (S20)

P
(

pf (t+ 1)|pf (t), sF
)

= Beta
(

pf (t)sF , (1− pf (t))sF
)

, (S21)

and introduce a multinomial generalization of the Beta distribution, called the Dirichlet

distribution [6], to reflect the strain-specific dynamics with more than two outcomes:

P
(

pi|v(t+ 1)|pi|v(t), sI
)

= Dir
(

{pi|v(t)× sI}i
)

. (S22)

The probabilities obey the relation
∑

i pi|v(t) = 1 for all t. This simply means that, given

a successful virus isolation, the isolate must be one of the types i under consideration.

The formulations in equations (S20-S22) give the distribution of each probability pa-

rameter each month, where the expected value is the parameter value last month and the

variance depends on the appropriate scale factor. Given an initial value for the process

at t = 0 (a value for the month before data is available) and an appropriate scale factor,

the complete set of probabilities can be written using the Markov property:
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P
(

{pt(t)}t|pt(0), sT
)

=
∏

t∈0,T

P
(

pt(t+ 1)|pt(t), sT
)

, (S23)

P
(

{pf (t)}t|pf (0), sF
)

=
∏

t∈0,T

P
(

pf (t+ 1)|pF (t), sF
)

, (S24)

P
(

{pi|v(t)}i,t|{pi|v(0)}i, sI
)

=

∏

t∈0,T

P
(

{pi|v(t+ 1)}i|{pi|v(t)}i, sI
)

,
(S25)

Again, we group this part of the process model and assign a useful but arbitrary label

process2:

process2 = P
(

{pt(t)}t|pt(0), sT
)

× P
(

{pf (t)}t|pf (0), sF
)

× P
(

{pi|v(t)}i,t|{pi|v(0)}i, sI
)

. (S26)

This factor provides the probability of the Markov dynamics for transport exposure, farm

exposure and isolation of strain i given successful virus isolation. The product of the

likelihood, process1 and process2 provides the joint probability of all observed data and

all process parameters, given a set of initial conditions and values for the scale parameters

as defined in the next section. Note also that the product of process1 and process2 provides

both {pv(t)}t and {pi|v(t)}i,t so that the product pi,v(t) = pv(t)× pi|v(t) is defined for all

strain types and months, as needed for the likelihood factor.



11

1.3 Parameter model

The final element of the BSSM is to specify prior distributions for the parameters that

influence the process model. These parameters include (i) the starting values of the

parameters that obey Markov dynamics and (ii) the scale parameters that control variance

in the relation between parameters. The goal here is to provide diffuse, non-informative

priors and let the data and constraints of the model determine appropriate values.

The initial conditions for the transport and farm exposure are assigned uniform Beta

distributions and the initial condition for the strain-specific isolation frequencies is given

by a uniform Dirichlet distribution:

P (pt(0)) = Beta(1, 1) , (S27)

P (pf (0)) = Beta(1, 1) , (S28)

P ({pi|v(0)}i) = Dir({1}i) . (S29)

These are uniform distributions for the parameters over the simplex of appropriate di-

mension.

Finally, we choose a Pareto distribution as the prior for all of the scale parameters,

allowing for a long-tailed distribution of positive values, greater than one:

P (s∗) = Pareto(1, 1) . (S30)

Combining all of these elements, the probability for all initial conditions and scale

parameters is given by:
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parameters = P (pt(0))P (pf (0))P ({pi|v(0)}i)

× P (sS)P (sV )P (sT )P (sF )P (sI) . (S31)

1.4 MCMC sampling

The posterior distribution for all parameters in the BSSM developed above can be sampled

using Markov Chain Monte Carlo methods. The posterior is proportional to the joint

distribution over all data and model parameters. This joint distribution is given by the

product of factors making up the data, process and parameter models as follows:

posterior ∝ likelihood× process1

× process2× parameters , (S32)

where the elements are specified by equations (S3, S12, S26, S31). As is usual in MCMC

sampling, we can ignore the constant of proportionality and use the joint distribution

defined above to obtain samples from the posterior.

The Bayesian state-space model, as detailed in this supplement, was implemented in

Python using the PyMC package [3]. The model was burned in for 100 000 updates and

an additional 200 000 iterations were collected, thinning by a factor of twenty to produce

10 000 samples from the posterior distribution. Throughout the main manuscript, the

posterior mean and regions of 95% high probability density from the MCMC sampling

are presented. PyMC implements the Geweke test for convergence of the MCMC sampling

[7]. Under this test, comparing twenty sections of the MCMC traces for each parameter,
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all estimates were determined to have converged.
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Scale Estimate 95% HPD
sI 374 (244, 490)
sF 228 (15, 1 004)
sT 11 410 (216, 39 770)
sS 51 (4, 186)
sV 52 (32,72)

Table S1: Posterior mean and 95% HPD for scale parameters inferred using MCMC sam-
pling of the posterior distribution as described in the electronic supplementary material.
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Figure S1: [Color online] (a) Raw virus isolation counts, by strain type and (b) number
of attempted virus isolations each month. (c-f) Raw counts of the number of individual
pigs that have HI tests showing titer greater than 1:40 to the specific test antigen. An
individual pig can be ‘positive’ to one or more strain types by this test. The gray line
shows the number of positives to any type and the black line shows the total number of
samples taken.
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Figure S2: A fit of the Bayesian state-space model without 2009 serology data (compare
with figure 2a and 2c in main manuscript). The lack of serology data after 2004 results
in an increasing uncertainty in the estimation of ps(t), reflected by the gray region of
95% HPD. This fit does not have an increasing posterior mean for the probability of
seropositivity (panel b, solid line) but the uncertainty does not rule out this possibility.
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Figure S3: The probability of exposure during transport for swine that have no prior
immunity. This probability is estimated by the product of probabilities corresponding
to a lack of previous exposure on the farm (1 − pf (t)) and exposure during transport
pt(t). This probability is equal, on average, to the probability of virus isolation with the
variance described by scale factor sV .
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Figure S4: (a) The probability of isolating the classical swine (b) triple reassortant (c)
Eurasian avian-like and (d) pandemic H1N1 viral strains. The probability of isolating
human seasonal H1N1 is included in the model but is not plotted here because there are
only two isolations. In all panels, the black lines show the posterior mean and gray shading
indicates the region of 95% HPD. Gray dots show the maximum likelihood estimates for
the probability of isolating the focus strain (estimates equal to zero are show below the
zero-line for visual clarity). Black dots indicate missing data and are also plotted below
the zero-line. Note that the sum of the plotted strain-specific virus isolation rates pi,v(t)
equals the total isolation probability

∑

i pi,v(t) = pv(t) (See main text figure 2a).
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Figure S5: The probability of isolating strain type i ∈ {CS,EA,TR,Hu, pH}, given that
an isolation has occurred. (a) The three dominant strains are plotted, showing a clear
switch from classic swine to Eurasian avian-like. (b) Pandemic and human seasonal H1N1
are plotted separately due to the lower probability of isolation (note the difference in scale
between panels a and b).


