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Swine populations are known to be an important source of new human strains of

influenza A, including those responsible for global pandemics. Yet our knowl-

edge of the epidemiology of influenza in swine is dismayingly poor, as

highlighted by the emergence of the 2009 pandemic strain and the paucity of

data describing its origins. Here, we analyse a unique dataset arising from sur-

veillance of swine influenza at a Hong Kong abattoir from 1998 to 2010. We

introduce a state–space model that estimates disease exposure histories by

joint inference from multiple modes of surveillance, integrating both virological

and serological data. We find that an observed decrease in virus isolation rates is

not due to a reduction in the regional prevalence of influenza. Instead, a more

likely explanation is increased infection of swine in production farms, creating

greater immunity to disease early in life. Consistent with this, we find that the

weekly risk of exposure on farms equals or exceeds the exposure risk during

transport to slaughter. We discuss potential causes for these patterns, including

competition between influenza strains and shifts in the Chinese pork industry,

and suggest opportunities to improve knowledge and reduce prevalence of

influenza in the region.
1. Introduction
The 2009 pandemic highlighted the inadequate state of influenza surveillance in

swine populations around the world. Mounting evidence indicates that pigs

play a central role in the emergence of many pandemic influenza strains

[1,2], and it is now known that influenza A (H1N1)pdm09 was created by reas-

sortment of Eurasian avian-like (EA) and triple reassortant (TR) strains [3,4].

Phylogenetic reconstruction indicates that elements of the pandemic strain

had been co-circulating undetected in swine for more than 10 years [3,4].

This finding underscores the need to study the epidemiology of influenza in

swine populations at regional scales, and to understand the factors driving

transmission dynamics. Achieving this goal requires long-term, systematic

data from structured surveillance activities, but unfortunately almost no such

datasets exist. One conspicuous exception is a dataset describing long-term

virological and serological surveillance at a Hong Kong abattoir from 1998 to

2010, drawn from source farms across southern and southeastern China.

These data have already yielded important insights about the co-circulation

of influenza strains, strain replacement and viral reassortment in swine popu-

lations [5,6]. However, fundamental questions have yet to be addressed.

What epidemiological processes give rise to the observed rates of virus
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Figure 1. A diagram of the Bayesian state – space model consisting of data,
process and parameter models (see main text for definition of all par-
ameters). Dashed lines connect observations in the data model to relevant
probabilities for each month t. Solid black lines show relations between vari-
ables that make up the process model. Arrows indicate probabilities that
covary positively, whereas a bar indicates suppression of one probability
by another using a factor of one minus the relevant probability. Solid grey
arrows indicate a deterministic relationship as in pi,v(t) ¼ pv(t)pi|v(t). The
parameter model includes constant scale factors that represent the size of
uncertainties by allowing different levels of variance in relations between
parameters, as well as initial conditions pi|v(0), pt(0) and pf(0) (not shown
in the figure).
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isolation? Where in the swine production system, from farms

to abattoirs, does most transmission of influenza occur? How

are transmission dynamics affected by strain interactions and

the ongoing industrialization of swine production? Answer-

ing these questions would guide efforts to control influenza

in swine, and would shed light on mechanisms underpinning

future pandemic risks. Yet inferring these patterns of disease

transmission, a challenge in the best of circumstances, is par-

ticularly difficult here, because the available dataset was

collected at a single location, just prior to slaughter, prevent-

ing the direct study of transmission at different points in the

swine production system.

Here, we introduce a statistical inference framework that

uses a Bayesian state–space model (BSSM) to integrate simul-

taneously observed data streams to infer hidden patterns of

transmission [7,8]. This approach analyses virological and sero-

logical data together, informed by studies of the progression of

these clinical signs of infection in individual pigs [6,9,10]. Exper-

imental infection studies demonstrate that a naive pig infected

with influenza can be expected to shed virus for 5–7 days. We

define the window of recent exposure as the week prior to the

sampling date; successful virus isolation indicates exposure

during this period. The shedding period ends as antibodies to

the infecting influenza strain increase; seropositivity reflects

older exposure, which we define as infection more than one

week prior to the sampling date. Virological and serological

data are typically analysed separately, even when presented in

the same study, but joint analysis draws additional insights

from these data streams by exploiting their biological connection.

Because samples are drawn simultaneously at fixed points in

space and time, the differing time scales of the clinical signs pro-

vide insights into when transmission occurred, and, given

knowledge of host movements, where transmission occurred.

China has long been recognized as a priority for influenza

surveillance owing to the high densities of humans, swine

and fowl in the region [11]. Currently, China produces and con-

sumes almost 50 per cent of the world’s pork, requiring an

enormous swine population [12,13]. Over the past decade,

swine production systems in China have responded to rising

pork demand from a human population growing in size and

affluence, and have also been impacted by rising feed costs,

natural disasters and significant disease outbreaks [12–14].

Resulting changes in the farming facilities, transport systems

and patterns of trade will be reflected in the long-term

influenza surveillance dataset collected at the abattoir, as will

any epidemiological differences among circulating strains. In

the week before slaughter, pigs are exposed to increased popu-

lation mixing in trucks and holding pens, as well as ‘transport

stress’ that may affect immunity to infection [15,16]. During

their earlier life on the farms, infection risk will be influenced

by animal density, facility design and biosecurity [17].

We investigate how these risks of exposure to influenza have

changed over the past decade in Chinese swine, by using

our inference framework to estimate older exposures (corre-

sponding to time spent on the farm) and recent exposures

(corresponding to transport and holding just before slaughter).
2. Model and results
(a) Framework for analysis of surveillance data
The dataset consists of regular samples from active surveil-

lance at a Hong Kong abattoir from May 1998 through
January 2010. Tracheal and nasal swabs were collected fort-

nightly from swine at slaughter, and monthly viral isolation

rates, as well as corresponding strain typing, are available

for almost all of the surveillance period. Sera were collected

from swine at slaughter, and monthly seroprevalence data

are available for the years 2000, 2004 and 2009 (see §4 for

detailed information about the abattoir, viral isolation, strain

typing and serology processing methods). Unavailable data

are treated as missing values and imputed using the model.

The BSSM provides a probabilistic description of hidden

process dynamics and their relation to the observed virus

isolation and serological data (figure 1; see also the electronic

supplementary material). Following convention [7,8], we

divide the state–space model into (i) a data model, which

provides the connection between model parameters and

data in the form of the likelihood, (ii) a process model,

which describes hidden dynamics and their relation to

observed data, and (iii) a parameter model. Observed data

include the number of strain-specific virus isolations per

month, which we denote by ni(t) for strain i in month t.
Monthly counts of seropositive samples (defined as having

a titre of greater than or equal to 1 : 40 to any test antigen)

are designated as ns(t). Serological data were not divided

into strain-specific responses owing to ambiguities in assign-

ment. This use of serological data assumes that seropositivity

reflects protection from contemporary viruses (see electronic

supplementary material, figure S1; see discussion in §3b).

The data model treats the virus isolation samples for each

http://rspb.royalsocietypublishing.org/
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month as multinomial, niðtÞ � Multð pi;vðtÞÞ; where the prob-

ability of isolating strain i, pi,v(t), is the product of the

probability of virus isolation pv(t) and the probability of find-

ing type i given virus isolation, pi|v(t). Serological data are

binomially distributed, nsðtÞ � Binð psðtÞÞ; where ps(t) is the

probability of being seropositive in month t.
The next layer of the process model connects the monthly

data to the unobserved transmission dynamics described by

the total probabilities of exposure to influenza on the farm
or during transport to slaughter, denoted pf(t) and pt(t),
respectively. We assume that previous exposure on the

farm provides immunity to circulating strains of influenza,

so that virus isolation is possible only when a naive animal

is exposed within the week before sampling. This is reflected

by the expectation E½ pvðtÞjptðtÞ; pfðtÞ� ¼ ptðtÞð1� pfðtÞÞ: Sero-

positivity is directly related to the total probability of

exposure on the farm, E½ psðtÞjpfðtÞ� ¼ pfðtÞ: Using this

model structure, both virus isolation and serostatus affect

the inferred values of pf(t) and pt(t). The model includes

scale parameters that control the variance in these statistical

relations (see the electronic supplementary material). These

parameters allow for uncertainty owing to unspecified

sources such as assay accuracy, individual variation in

animal response to exposure and month-to-month changes

in the farms supplying the abattoir. All scale parameters

are inferred along with the rest of the model parameters

using Markov chain Monte Carlo (MCMC) sampling of the

BSSM (see the electronic supplementary material, table S1).

The final element of the state–space model describes the

temporal variation of the exposure parameters pf(t), pt(t)

and pi|v(t). Each of these parameters is assumed to vary as

a Markov process, with expected value for the next month

equal to the value in the current month. The month-to-

month variance is determined by a scale parameter that is

inferred from the data, as discussed earlier. This construct

provides a constraint on the values of the hidden process

dynamics, and potentially smooths outliers that arise from

erratic sampling of a broad geographical region. It also

allows us to impute missing data that make up part of our

inference problem.
(b) Virus isolation and seropositivity
The posterior mean for the probability of virus isolation,

without regard for strain type, follows the trends exhibited

in the raw data (figure 2a). As noted in earlier work, virus iso-

lation rates appear to decline over the past decade, with a

protracted period of low isolation rates from 2005 to 2008

[6]. The posterior mean exhibits less variation than the raw

data owing to the process constraints in our state–space

model and the month-to-month variation in the raw data

(figure 2b). Importantly, the raw frequencies are included in

the 95 per cent high probability density (HPD) region for

all months where virus was isolated (figure 2a). Only in

months where there were no virus isolations, resulting in a

raw frequency equal to zero, does this value fall outside the

HPD. In these cases, the posterior mean for the probability

of virus isolation is estimated to be in the order of 10– 3.

This small probability is consistent with the lack of successful

virus isolation given the number of samples taken. Instances

where the raw frequency falls outside of the HPD for this

reason are indicated by grey symbols in figure 2b.
The inferred probability of seropositivity shows a con-

trasting trend, rising slightly over the course of the decade

(figure 2c). When there is a missing data point, the state–

space model imputes the value of ps(t) using constraints

imposed by the model and information from the virological

data. Again, the raw frequencies for available seropositivity

data are more variable than the posterior mean probabilities

(figure 2d ). However, the breadth of the 95 per cent HPD

region includes all raw frequency estimates and reflects the

uncertainty generated by the presence or absence of data

through time.

(c) Inference of exposure probabilities
The monthly patterns of virus isolation and seropositivity

provide a noisy and indirect picture of the unobserved trans-

mission dynamics. Our joint analysis enables us to infer

the probabilities of exposure to influenza during different

phases of the pigs’ lives prior to slaughter. Estimates of

exposure during transport show that this probability has

been approximately constant for the decade of surveillance

(figure 3a). The pattern of lifetime exposure on the swine

farms is more dynamic, with the posterior mean showing

an increasing trend (figure 3b). Sample sizes and missing

data limit the precision with which this trend can be esti-

mated, but the region of 95 per cent HPD does not admit a

constant probability over the decade. As expected, the 2009

serology data are crucial to discerning the increase in farm

exposure; if these data are removed from the BSSM fit, then

the increase is not evident but is still consistent with the uncer-

tainty in the refit model (see the electronic supplementary

material, figure S2).

It is conspicuous that the virus isolation rate does not

mirror the probability of exposure during transport (figures

2a and 3a). Successful virus isolation at the abattoir occurs

only when exposure during transport coincides with a lack

of earlier exposure on the farm. A monthly estimate of this

combined probability, given by ptðtÞ � ð1� pfðtÞÞ; shows

that the posterior mean for recent exposure of naive animals

has decreased (see the electronic supplementary material,

figure S3). Although this trend is not significant at the 95

per cent level, owing to the multiplication of uncertainties,

it is consistent with the observed decrease in virus isolation

rates over the decade. It is possible that pigs systematically

spent longer in transport during periods of lower virus iso-

lation than they did during periods of higher virus

isolation. However, because of economic pressures this con-

founding variation in transportation time seems unlikely to

have occurred. In any case, the inferred force of infection

(FOI) during transport is insufficient to create this effect

(i.e. the susceptible pool would not be exhausted within

any reasonable period of transport, so new infections

would continue to occur).

(d) Force of infection for swine influenza
The inference of the probabilities of exposure in transport and

on the farm enables us to estimate the weekly FOI in each

setting (figure 4). For a given exposure time Te and probability

pe, the FOI can be estimated using FOI ¼ �ð1=TeÞ lnð1� peÞ.
This relation is obtained by a simple rearrangement of the

more familiar form: pe ¼ 1� expð�FOI � TeÞ (see [18] for

derivation). Because pt(t) describes exposures in the week

before slaughter, the weekly FOI during transport is virtually

http://rspb.royalsocietypublishing.org/
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Figure 2. Observed and imputed patterns of virological and serological surveillance for influenza in Chinese swine. Monthly probabilities of (a) viral isolation pv(t)
and (c) seropositivity ps(t) are provided, as well as a comparison of raw frequency and posterior mean estimates for (b) viral isolation and (d ) seropositivity. In
(a,c), grey dots show raw frequency estimates of the monthly probabilities; estimates equal to zero are shown below the zero-line for clarity. Missing data are
indicated by black dots below the zero-line. The solid black lines show the posterior means of the probabilities inferred from joint data analysis and the grey bands
show the region of 95% HPD. In (b,d ), the dashed line shows equality between raw frequency and posterior mean estimates; months where raw frequencies fall
outside the HPD region are indicated by grey dots. With the exception of months with no virus isolation, raw frequencies fall within the HPD region, indicated by
black dots.
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identical to figure 3a and has remained approximately con-

stant at roughly 0.03 per week over the decade (Te ¼ 1 week

and pe ¼ pt(t) for each month). Estimation of the FOI for pigs

on the farm depends on their age at slaughter and the duration

of protection by maternally derived antibodies, which may

prevent infection and development of haemagglutination

inhibition (HI) titres [10]. Given typical ranges of 16–24

weeks of age at slaughter and 4–8 weeks of protection by

maternal antibodies, we used possible exposure durations of

8, 16 and 24 weeks to estimate a range of possible FOIs

(Te ¼ 8, 16, 24 weeks and pe ¼ pf(t) for each month). Vacci-

nation of swine against influenza is not reported for Chinese

farms and should not affect exposure durations in these

calculations [13,19].

Estimates of the weekly FOI on swine farms and during

transport to slaughter are shown in figure 4. The 95 per

cent HPD region is provided for the transport FOI and one

farm FOI to give an indication of the scale of uncertainties;

HPD regions for the farm curves are larger due to the greater

uncertainty in seropositivity (figure 2c). For most assump-

tions about exposure duration on the farm, the weekly FOI
is statistically indistinguishable between farm and transport

phases over the decade. However, when the period of

exposure on farms is assumed to last just eight weeks, the

weekly FOI is significantly higher on farms than in transport

from 2007 onwards. The robust pattern across all scenarios is

that, despite the stress and increased mixing associated with

transport and holding before slaughter, the weekly risk of

exposure to influenza appears to be equal or higher on the

production farms.
(e) Strain replacement
During the decade of surveillance, one of the major features

observed was an replacement of the classic swine H1N1 (CS)

with an EA strain as the dominant viral strain in southern

China (previously described by Vijaykrishna et al. [6]).

Experimental infection studies demonstrated a competitive

advantage of EA over CS strains, as well as limited immunity

in the population, suggesting a biological mechanism for this

replacement [6]. The state–space model provides insights into

the dynamics of strain replacement by inferring monthly,

http://rspb.royalsocietypublishing.org/


date (year)

99 00 01 02 03 04 05 06 07 08 09 10

pr
ob

ab
ili

ty
 o

f 
tr

an
sp

or
t e

xp
os

ur
e

0.15(a)

0.10

0.05

0

pr
ob

ab
ili

ty
 o

f 
fa

rm
 e

xp
os

ur
e

0.75

1.00(b)

0.50

0.25

0

Figure 3. Total probabilities of exposure during (a) transport and holding in
the week before slaughter ( pt(t)), and (b) earlier life on the swine farm or
production facility ( pf(t)). Inferred values for each month are plotted. The
solid black lines show the posterior means of the probabilities and
the grey bands show the 95% HPD regions. No data are shown because
these transmission dynamics are not directly observed.

es
tim

at
ed

 w
ee

kl
y 

fo
rc

e 
of

 in
fe

ct
io

n

0.30

0.20

0.10

0

date (year)

99 00 01 02 03 04 05 06 07 08 09 10

Figure 4. The weekly force of infection (FOI) during transport and holding
before slaughter, and during earlier life on swine farms. The solid black
line provides the posterior mean for transport FOI with 95% HPD indicated
by the lower grey region. Three estimates of the posterior mean for FOI
on farms assume a total exposure time of 8 (grey dashed line; 95% HPD
shown as upper grey region), 16 (grey solid line) or 24 weeks (grey
dotted line) to represent different scenarios for age at slaughter and the
duration of protection by maternally derived antibodies.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20130872

5

 on August 22, 2014rspb.royalsocietypublishing.orgDownloaded from 
strain-specific viral isolation rates (see the electronic supplemen-

tary material, figures S4 and S5).

The emergence of a fitter influenza strain could account for

the rise in on-farm exposure revealed by our analysis. However,

the EA strain appeared in 2000–2001 and became dominant in

2003–2005, whereas the rise in exposure on farms occurred

mostly from 2004 to 2008 (figure 3b). This suggests that the

strain replacement was not the immediate cause of the changing

epidemiological pattern. Instead, we propose that large-scale

changes in the swine industry are the more likely explanation,

and indeed may have played an important role in the strain

dynamics via introduction of novel strains and emergence of

reassortant strains. The geographical sourcing of swine for the

sampled abattoir shifted significantly over the decade [6].

From 2000 to 2007, 15–20 per cent of the pigs were farmed

near Hong Kong, with the remainder imported from several

provinces in China; by 2008, the local proportion had fallen to

5 per cent. The percentage of swine sourced from nearby

Guangdong province increased from 31.1 in 2003 to 51.8 in

2010. These shifts in industry-wide patterns, along with accom-

panying changes in conditions at production facilities, should

be considered as potential causes of the observed shifts in epi-

demiology and strain frequencies, alongside the biological

mechanisms already proposed.
3. Discussion
The long-term, active surveillance data considered here provide

a rare glimpse into the transmission dynamics of influenza in

swine populations over the decade leading up to the 2009

pandemic. While the pandemic did not arise in China, the

co-circulation of multiple lineages and genetic reassortment

events observed in the course of this surveillance provide

insight into likely virus transmission dynamics leading up to

pandemic emergence in the Americas [5,6]. The joint analysis

of virological and serological data allows us to infer time-vary-

ing risks of influenza exposure across production stages,

despite the fact that samples were taken at a single location.

To untangle this information, we used knowledge gained

from experimental infection studies of influenza in swine to

define recent and older time frames for infection, indicated

by the potential for virus shedding and detection of antibodies,

respectively. Using this connection, we separated exposure

risks during transportation and holding the week before

sampling from exposures occurring during earlier life on

swine farms in southern and southeastern China.

The model presented here provides a statistical framework

to link experimental infection studies with surveillance data

streams to quantify epidemiological processes, both observed

and hidden. We can infer that influenza prevalence in the

region has not decreased despite an apparent reduction in

virus isolation rates (see figure 2; electronic supplementary

material, figure S1). Instead, we find that the FOI during trans-

port in the week before slaughter has remained remarkably

constant at approximately 3 per cent per week over the

decade. By contrast, the cumulative probability of exposure

on the farm has increased over this period. We conclude that

the observed reduction in virus isolation rates reflects the rise

in exposure early in life, which results in immunity that pre-

vents infection in the week before sampling. This finding has

two important implications: (i) a perceived reduction in

http://rspb.royalsocietypublishing.org/
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influenza prevalence at slaughter is not due to improved biose-

curity or other preventative measures; and (ii) the overall

prevalence of influenza in the swine population has not

decreased, and hence the risk of spillover to susceptible

human and bird populations is constant or growing. Our find-

ings show that the risk, as measured by the FOI, is at least as

high on swine farms as it is in transport and holding settings.

Further, influenza on the farms appears to have increased

over the decade, although the statistical significance of this

trend would be strengthened with additional data.
g
ProcR

SocB
280:20130872
(a) Epidemiology of swine influenza
The increasing scale of the pork industry in China provides the

backdrop for the findings reported here. Over the past decade, a

series of market-driven and natural perturbations (including

rising feed costs, the 2008 Sichuan earthquake and outbreaks

of non-influenza disease) have led to major disruptions in the

Chinese swine population [12–14,19,20]. The resulting econ-

omic impacts motivated a push towards production in larger,

more regulated facilities in an effort to stabilize supply, limit

price increases and minimize disease outbreaks [13,19]. The

growing size of swine farming facilities has increased the poten-

tial for sustained influenza transmission, particularly given the

apparent lack of vaccination against influenza. The rise in on-

farm exposure reported here could be attributed to these factors,

and related changes linked to industrialization [21].

Our study reveals long-term patterns of influenza circula-

tion under these changing conditions, inferred from data

collected from a random subset of animals passing through

the abattoir in Hong Kong. We estimate the rate of virus iso-

lation to range from 0.1 to 10 per cent, with a mean of 1.6

per cent over the decade (see figure 2; electronic supplementary

material, figure S3), whereas seropositivity ranges from 24 to 74

per cent, with a mean of 50 per cent (figure 2). Many of the

high rates of isolation occur in the early 2000s, with relatively

low seroprevalence; this pattern shifts to lower isolation rates

and higher seropositivity late in the decade. Here, we place

our observations in the context of shorter-term epidemiological

studies conducted elsewhere in the world.

Samples collected in 1997–1998, during fortnightly surveil-

lance of swine at an abattoir in the United States, showed a

mean virus isolation rate of 2.2 per cent, with monthly peaks as

high as 16 per cent [22] (see also [23]). The mean seroprevalence,

using abattoir samples as well as sera sent to the Wisconsin

Animal Health Laboratory for pseudorabies virus testing, was

27.7 per cent for a strain of CS H1 influenza, with monthly

values ranging from 10 to 60 per cent. These observations are con-

sistent with our data from Hong Kong, both on average and with

regard to the wide variation in monthly rates; intriguingly, the

quantitative match is closer during the 1998–2004 period,

when our data were also dominated by the CS strain.

A survey of Spanish swine farms during 2008–2009 found

a seroprevalence of 75.4 per cent to at least one of three strains

of influenza (H1N1, H1N2 and H3N2) [17]. These results were

broken down by age, with seropositivity among younger fat-

tening pigs (11–20 weeks of age, a closer match to animals

included in our study) measured to be 53.1 per cent, while

that among older cows was 89.9 per cent. Similar values for

sows of varying ages were obtained for pig-dense European

countries during a 2002–2003 survey with 85.2 per cent sero-

prevalence in Germany and 94 per cent in Belgium [24]. A

recent survey of influenza prevalence in other Asian countries
showed mean levels of virus isolation and seropositivity simi-

lar to our results for Hong Kong [21,25]. We conclude that the

epidemiology of swine influenza in southern China is broadly

consistent with available data from other industrialized

countries worldwide.

Our findings show that efforts to limit the prevalence of

influenza A in Chinese swine populations could usefully be

targeted to improving practices in production facilities.

Such control efforts could be informed by recently identified

risk factors for influenza on Spanish swine farms: (i) high

replacement rates that introduce new susceptibles or new

subclinically infected animals; (ii) lack of solid separations

to prevent transmission between pens; and (iii) uncontrolled

entrance to farms [17]. In contrast to the situation on farms,

we found that the probability of influenza exposure during

the week before slaughter has not risen or fallen as a result

of industry growth over the past decade. This suggests that

there are unrealized opportunities to reduce spread during

transport and limit potential for mixing of geographically

separated strains. For example, transmission between pens

holding pigs from different farms has been observed at a

quarantine point in Shenzhen and provides an opportunity

for improvement (see §4). However, the validity of compari-

sons between this system and Spanish farms remains unclear,

and the economics of swine production raise challenges in

motivating changes in practice for influenza control.
(b) Impact of model assumptions
The results of our analysis arise from the probabilistic relations

that make up the BSSM. The strongest assumption we made

is that antibodies above a certain titre are protective against

challenge by any contemporary influenza strain. In our analy-

sis, exposure probabilities are inferred by considering virus

isolation and serostatus data independent of the strain type

or detailed serological profile. Patterns of serological cross-reac-

tivity and immunity in influenza are complicated, even when

the test antigen is known and experimental infection is done

under laboratory conditions [6,9,26]. As a result it is not poss-

ible to definitively connect a given serological profile to prior

infection by one or more known strains. Under field conditions,

this problem is amplified by the fact that the observed serolo-

gical profiles might be caused by one or more viral strains that

are not used as n strains in HI panels, and have not been

characterized by experimental infection studies.

A significant proportion of swine sampled in our dataset

had titres greater than or equal to 1 : 40 to many, or all, strains

tested (see the electronic supplementary material, figure S1).

This pattern could arise from cross-reactivity among the

strains or from multiple infections by different strains. How-

ever, the age of pigs at the time of slaughter ranges from four

to six months, and it is usually assumed that only a single

infection is possible during this time (though this assumption

may not hold in all cases [27,28]). As a result, we argue that

the assumption of immunity to contemporary strains is

appropriate, and that strain-specific analyses of our data are

not possible given current knowledge of influenza serology.

If the assumption is too strong, and cross-immunity among

these strains is not complete, then our results would over-

estimate the probability of recent exposure (because we

would have underestimated the true proportion of swine

that are susceptible to infection). To explore this possibility,

we re-ran the BSSM assuming 50 per cent protection for

http://rspb.royalsocietypublishing.org/
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seropositive animals. This model, which could account for

second infections by different strains or for limited protection

from previous exposure, reduces the posterior mean prob-

ability of recent exposure to 2.4–2.5 per cent (from approx.

3%) over the decade. The difference in these estimates,

given the related uncertainties, does not substantially

change the conclusions presented earlier. Further progress

on this problem will require experimental infection studies,

including multiple exposures and longitudinal sampling of

serum from individual animals, as well as development of

methods that elucidate the connections between immunity

and profiles derived from field serological data [9,29].

The model includes constant scale parameters that deter-

mine the variances in association between elements of the

process model (see figure 1; electronic supplementary material).

In table S1 of the electronic supplementary material, we show

the inferred values, which vary inversely with the variance,

along with regions of 95 per cent HPD. The scales for virus

isolation and serostatus are low, and allow for considerable var-

iance in the relation to the hidden probabilities of exposure. This

uncertainty can be attributed to month-to-month variation in

source farms, assay sensitivity and individual variation, as

well as other unknown factors. The estimated scale parameters

for hidden process dynamics are larger, allowing for less vari-

ation and resulting in smoothed dynamics, hence limiting

inordinate weight to data from any single month.
(c) Broader applications of multi-stream surveillance
analysis

We have introduced a mechanistic state–space model to infer

unobserved transmission histories from joint analysis of virologi-

cal and serological surveillance data. Our model provides robust

inference of epidemiological parameters, smoothing anomalous

data and imputing missing data based on mechanistic assump-

tions. Multiple modes of surveillance are commonly conducted

in parallel, and other studies could benefit from similar joint ana-

lyses of these data streams [25,30–32]. In practice, sampling

design is very important when applying this idea, because all

data streams need to be sampled at the same time points, from

the same population. Ideally, this sampling would occur at regu-

lar intervals from randomly selected animals, providing an

unbiased picture of disease dynamics in the focal population.

This approach can be adapted to any disease for which

the time course of multiple clinical outcomes, including diag-

nostic measures or signs of disease, have been characterized

by experimental infection studies or close observation of

natural infections [33]. Given different time scales associated

with different clinical outcomes, such analyses would open

broader opportunities to reconstruct the histories of exposure

prior to sampling. Further quantitative precision could be

obtained by expanding experimental infection studies to

characterize individual-specific variation, and estimate the

sensitivity and specificity of different assays. In principle,

the kinetics of some assays could be characterized so that

quantitative results could be used, instead of binary out-

comes, to derive more specific information about the time

since infection. Further theoretical and statistical tools to inte-

grate these classes of data will also need to be developed.

Combined with a carefully designed surveillance plan,

these approaches could enable the inference of disease trans-

mission histories in systems where host individuals can only
be sampled once, an all-too-common limitation in settings

ranging from livestock inspections to wildlife studies.
4. Material and methods
(a) Surveillance data
Systematic influenza surveillance was conducted between May

1998 and January 2010 at an abattoir in Hong Kong where

roughly 4500 pigs per day are processed (current data are avail-

able online at http://www.fehd.gov.hk/english/sh/index.

html). Tracheal or nasal swabs (109–512 per month) and

serum samples (20–50 per month) were collected from a

random sample of slaughtered swine [6] (see the electronic sup-

plementary material, figure S1 for raw data). Sampled swine

were between the ages of four and six months, and were sourced

from provinces throughout southern and southeastern China [6].

Information that connects source farm, transport time, transport

method and disease status of individual animals is unavailable. We

have no information about the size of farms that provide pigs to this

abattoir, but McOrist et al. [19] provide data on the size of pig farms

in China and their growth between 2008 and 2011. Pigs are trans-

ported in trains and lorries, with the transport period varying

depending on the starting farm location (see supplementary

information in [6] for information on source farms). The pigs are

held at a border quarantine station in Shenzhen, just across the

border from Hong Kong, to check health status before transport

to Hong Kong. Pigs from each source farm are held in separate

pens, but they may be next to a pen with animals from a different

farm and there is evidence of transmission among pens. After the

quarantine station, each consignment is shipped separately to the

abattoir in Hong Kong.

(b) Virus isolation, strain typing and seroprevalence
Swab materials were inoculated into 9- to 10-day-old embryo-

nated chicken eggs and Madin Darby canine kidney cells; virus

isolates were identified and subtyped by HI assays as previously

described [6]. In addition, strains included in the study were fully

sequenced and typed based on phylogenetic relationships of all

gene segments [4]. Antibody prevalence against the major

swine influenza lineages was characterized using the HI assays

with six representative viruses—A/Sw/HK/4167/1999 (CS),

A/Sw/HK/1110/2006 (TR), A/CA/4/2009 (Pand), A/SW/

HK/1304/2003 (CS), A/Sw/HK/NS29/2009 (EA) and A/SW/

HK/1559/2008 (EA)—starting at a dilution of 1 : 10. Titres

greater than or equal to 1 : 40 were taken as seropositive [6].

(c) Bayesian state-space model and Markov chain
Monte Carlo sampling

The BSSM is a hierarchical model with time-dependent associ-

ations as developed in earlier studies [7,8]. Complete details of

the statistical framework are provided in the electronic sup-

plementary material. Computational elements of the MCMC

inference process use the Metropolis–Hastings algorithm with

tuning during burn-in to sample from the posterior distribution,

as implemented by the PYMC PYTHON package [34].
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