Python setup on Ubuntu 16.04
Sep 21, 2016
warning
This post is more than 5 years old. While math doesn't age, code and operating systems do. Please use the code/ideas with caution and expect some issues due to the age of the content. I am keeping these posts up for archival purposes because I still find them useful for reference, even when they are out of date!
In this post I will document my approach to python on Ubuntu 16.04. To be clear, this is not the only way to do things and I make no claims that it is the best strategy. However, it is useful for me to write this information down for future reference. Who knows, it might be helpful for you too!? Let me know if it is. I also love to read about other approaches, so leave comments and/or links below.
You can also read over my thoughts on python on Ubuntu 14.04 here-- see Install Python packages on Ubuntu 14.04 , virtualenv and virtualenvwrapper on Ubuntu 14.04 , and Python 3.4 on Ubuntu 14.04 using virtual environments . I will be using elements of those ideas in my approach to python on 16.04. However, be aware that some things have changed since those posts were written-- proceed with care!
First up, what are we working with? Without installing anything we already have versions of python 2.7 and 3.5:
$ python --version
Python 2.7.12
$ python2 --version
Python 2.7.12
$ python3 --version
Python 3.5.2
So, if I just type python
I get python
2.7+, but python 3.5+ is also easily available. It also useful to see where
these versions of python live. I can find that using
which
:
$ which python2
/usr/bin/python2
$ which python3
/usr/bin/python3
Keep these locations in mind for later-- I will use them to set up virtual environments that use different python versions.
build, python-dev and pip
To start I will install Ubuntu-specific packages that are python-related, or needed to compile/link new installs. To start, I install the basic development packages as follows:
$ sudo apt-get install build-essential
$ sudo apt-get install python-dev
$ sudo apt-get install python3-dev
Of course, that can all be done on one line, but I want to make it clear what is being installed. These Ubuntu installs provide gcc, make, as well as headers for python 2 and python 3.
Next I install Ubuntu 16.04 versions of pip for both python 2 and python 3:
$ sudo apt-get install python-pip
$ sudo apt-get install python3-pip
Unfortunately, this is where things get confusing and one has to make choices about how to approach installing python packages. If I check on pip after the above installs I get:
$ which pip
/usr/bin/pip
$ which pip3
/usr/bin/pip3
In fact, if I list pip-like things in
/usr/bin/
I get
$ ls /usr/bin/pip*
/usr/bin/pip /usr/bin/pip2 /usr/bin/pip3
So, the pip situation is like the python executables, with python 2 versions (pip and pip2) as well as a python 3 version (pip3). If I try to list the python packages installed I get
$ pip list
-- list of python 2 packages installed --
You are using pip version 8.1.1, however version 8.1.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
The result is similar for pip3 (except more packages listed):
$ pip3 list
-- list of python 3 packages installed --
You are using pip version 8.1.1, however version 8.1.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
What to do? As far as I can tell only one of the "pip"s can be updated in a consistent way, it doesn't really matter which one, so I chose to upgrade (the python 2 version) pip:
$ pip install --user --upgrade pip
I think the Ubuntu python-pip will do a user install even if the
--user
flag is not used. Once this is
done, I make sure the path for user installs is included by adding the
following lines to end of
my ~/.bashrc
file:
# include .local/bin for local python scripts
export PATH=~/.local/bin:$PATH
In order to get bash to recognize this change I can source the file:
$ source ~/.bashrc
or close and re-start the terminal. Either way, inspecting pip should now give:
$ which pip
/home/cstrelioff/.local/bin/pip
$ which pip3
/usr/bin/pip3
Now I have the updated version of pip and still have pip3 available.
strategy
Now that I have the basics in place, let's talk strategy. How will I install python packages that I need? In practice there are three options that I will use at various times. I'll start with the short, brief overview here and go into more detail in the sections below.
Option 1: Use sudo apt-get
Use the Ubuntu-specific packages that can be installed using
$ sudo apt-get *packagename*
This has the advantage of not having to worry about dependencies, but comes at the cost of not (always) having the most current version.
Option 2: Use pip to install as a user
Use pip to install as a user, like:
$ pip install --user *packagename*
or
$ pip3 install --user *packagename*
This allows me to install packages that need to be up-to-date but can be more complicated if dependencies need to be found and installed. I will only use this for a few packages.
Option 3: Use a virtual environment
Use a virtual environment to have the most up-to-date python 2
or python 3 packages. I will use this approach quite a bit.
An important note on these options-- I only use
sudo
with
apt-get
. The pip
installs will always be with the --user option, or in a virtual environment.
The goal here is to avoid conflict between Ubuntu-packages and pip-packages.
Let's get into the specifics of all the options with examples...
Option 1: python packages with sudo apt-get
This is probably the safest way to install any python package on Ubuntu 16.04 because we are using code that has been designed to work with the OS package manager. As an example, I will install the very popular pandas package.
For a python 2 version, I install with:
$ sudo apt-get install python-pandas
and for a python 3 version, I use:
$ sudo apt-get install python3-pandas
Even though I didn't install with pip, I can get information about the version of pandas installed using
$ pip show pandas
---
Metadata-Version: 1.1
Name: pandas
Version: 0.17.1
Summary: Powerful data structures for data analysis, time series,and statistics
Home-page: http://pandas.pydata.org
Author: The PyData Development Team
Author-email: pydata@googlegroups.com
License: BSD
Location: /usr/lib/python2.7/dist-packages
Requires: python-dateutil, pytz, numpy
Classifiers:
Development Status :: 5 - Production/Stable
Environment :: Console
Operating System :: OS Independent
Intended Audience :: Science/Research
Programming Language :: Python
Programming Language :: Python :: 2
Programming Language :: Python :: 3
Programming Language :: Python :: 2.6
Programming Language :: Python :: 2.7
Programming Language :: Python :: 3.3
Programming Language :: Python :: 3.4
Programming Language :: Python :: 3.5
Programming Language :: Cython
Topic :: Scientific/Engineering
Notice that the version is 0.17.1 and the location is
/usr/lib/python2.7/dist-packages
.
From this information I can see the version
is not the latest; at the time of this post the current version is 0.18.1.
Also, the location indicates the install was done with
sudo apt-get
because it is not in ~/.local/lib/
.
Try out the same command for the python 3 install:
$ pip3 show pandas
You should get similar information with a different location. Also, the pip warning will appear because pip3 was used.
Note: If you are having trouble finding the name of a
python package on Ubuntu try
apt-cache search
, like so:
$ apt-cache search pandas
libgraxxia-java - Wrappers for doing Mathematics in Groovy
neurodebian - neuroscience-oriented distribution - repository configuration
neurodebian-archive-keyring - neuroscience-oriented distribution - GnuPG archive keys
neurodebian-desktop - neuroscience-oriented distribution - desktop integration
neurodebian-dev - neuroscience-oriented distribution - development tools
neurodebian-popularity-contest - neuroscience-oriented distribution - popcon integration
python-geopandas - Python tools for geographic data
python-geopandas-doc - Documentation for the geopandas library
python-pandas - data structures for "relational" or "labeled" data
python-pandas-doc - documentation and examples for pandas
python-pandas-lib - low-level implementations and bindings for pandas
python-seaborn - statistical visualization library
python-sklearn-pandas - Pandas integration with sklearn (Python 2)
python3-geopandas - Python3 tools for geographic data
python3-pandas - data structures for "relational" or "labeled" data - Python 3
python3-pandas-lib - low-level implementations and bindings for pandas - Python 3
python3-seaborn - statistical visualization library
python3-sklearn-pandas - Pandas integration with sklearn (Python 3)
You'll see for the above example both the python 2 and python 3 packages names
are found, python-pandas
and
python3-pandas
respectively, in addition
to other items.
Option 2: pip install --user
This option is one that I do not use that I often. However, for virtualenv , virtualenvwrapper , and tmuxp . I like to have the latest versions without starting up a virtual environment. I'll install those here, using the python 2 versions:
$ pip install --user virtualenv
$ pip install --user virtualenvwrapper
and, if you like (you don't need to install tmuxp-- I use it with tmux; but that's for a different post):
$ pip install --user tmuxp
A couple of important things to note here:
-
I install with the
--user
option; don't usesudo pip
. - I only install the python 2 version using pip.
I would keep this type of install to a minimum. Instead use virtual environments, as described below, if you'd like to the most up-to-date versions of a package. Or, if you'd like a package that is certain to work well with Ubuntu 16.04 try Option 1, described above.
Option 3: virtualenv and virtualenvwrapper
setup
The first step for this option is to finish the setup of
virtualenvwrapper
,
by making some additions to ~/.bashrc
.
Again, put these at the end of the file and source
the file or restart the terminal:
# where to store our virtual envs
export WORKON_HOME=$HOME/virtenvs
# where projects will reside
export PROJECT_HOME=$HOME/Projects-Active
# where is the virtualenvwrapper.sh
source $HOME/.local/bin/virtualenvwrapper.sh
The above settings
-
Save virtual environments in the
~/virtenvs
directory, -
Create new projects in
~/Projects-Active/new_project
directory, -
Specify the location of the
virtualenvwrapper.sh
file-- you can find this with
Again, this is in$ which virtualenvwrapper.sh
/home/cstrelioff/.local/bin/virtualenvwrapper.sh~/.local/bin
because I installed with the--user
option. If you'd like to keep the virtual environment files or project directories in a different location just change the paths in your~/.bashrc
.
usage
Now that the basics are installed and setup I can start installing the most up-to-date version of python packages for both python 2 and python 3. The key to make all of this work nicely is virtualenvwrapper. To demonstrate I create two virtual environments and install pandas in both.
python 2 -- First I create a python 2 virtual environment using the virtualenvwrapper tools (I will specify the python2 path even though it's not required here):
$ mkvirtualenv py2 -p /usr/bin/python2
Running virtualenv with interpreter /usr/bin/python2
New python executable in /home/cstrelioff/virtenvs/py2/bin/python2
Also creating executable in /home/cstrelioff/virtenvs/py2/bin/python
Installing setuptools, pip, wheel...done.
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py2/bin/predeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py2/bin/postdeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py2/bin/preactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py2/bin/postactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py2/bin/get_env_details
(py2) $
The terminal now indicates that the py2 virtual environment is active with
a (py2) $
prompt. Next, let's make sure
that we have the desired python and pip versions:
(py2) $ python --version
Python 2.7.12
(py2) $ pip --version
pip 8.1.2 from /home/cstrelioff/virtenvs/py2/local/lib/python2.7/site-packages (python 2.7)
Looks good. Next, I use pip to install pandas . Because I am in a virtual environment I can install without sudo and I don't need to use the --user flag! Just do
(py2) $ pip install pandas
Collecting pandas
Downloading pandas-0.18.1-cp27-cp27mu-manylinux1_x86_64.whl (14.2MB)
100% |████████████████████████████████| 14.2MB 88kB/s
Collecting pytz>=2011k (from pandas)
Using cached pytz-2016.6.1-py2.py3-none-any.whl
Collecting python-dateutil (from pandas)
Using cached python_dateutil-2.5.3-py2.py3-none-any.whl
Collecting numpy>=1.7.0 (from pandas)
Using cached numpy-1.11.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting six>=1.5 (from python-dateutil->pandas)
Using cached six-1.10.0-py2.py3-none-any.whl
Installing collected packages: pytz, six, python-dateutil, numpy, pandas
Successfully installed numpy-1.11.1 pandas-0.18.1 python-dateutil-2.5.3 pytz-2016.6.1 six-1.10.0
Look at that! pandas, as well as dependencies, are installed and there is no compiling-- thanks to python wheels! Also note that the current version of pandas, 0.18.1 at the time of this post, is installed. If we use pip to see what's in our py2 environment at this point we get:
(py2) $ pip list
numpy (1.11.1)
pandas (0.18.1)
pip (8.1.2)
python-dateutil (2.5.3)
pytz (2016.6.1)
setuptools (27.3.0)
six (1.10.0)
wheel (0.30.0a0)
Nice.
python 3 -- Next up, I do the same thing with python 3. First up, create the virtual environment using virtualenvwrapper:
(py2) $ mkvirtualenv py3 -p /usr/bin/python3
Running virtualenv with interpreter /usr/bin/python3
Using base prefix '/usr'
New python executable in /home/cstrelioff/virtenvs/py3/bin/python3
Also creating executable in /home/cstrelioff/virtenvs/py3/bin/python
Installing setuptools, pip, wheel...done.
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py3/bin/predeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py3/bin/postdeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py3/bin/preactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py3/bin/postactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/py3/bin/get_env_details
(py3) $
Notice that I run the mkvirtualenv
command while still in the py2
virtual environment and virtualenvwrapper is smart enough to create the
new py3 environment and switch to (py3)-- great stuff! Next, check the python
and pip versions to make sure we have what we expect:
(py3) $ python --version
Python 3.5.2
(py3) $ pip --version
pip 8.1.2 from /home/cstrelioff/virtenvs/py3/lib/python3.5/site-packages (python 3.5)
Awesome-- notice that this is the latest pip in the python 3 environment. Finally, let's install pandas (notice that I can use pip and don't need to use pip3 here because I am in the py3 environment):
(py3) $ pip install pandas
Collecting pandas
Using cached pandas-0.18.1-cp35-cp35m-manylinux1_x86_64.whl
Collecting pytz>=2011k (from pandas)
Using cached pytz-2016.6.1-py2.py3-none-any.whl
Collecting python-dateutil>=2 (from pandas)
Using cached python_dateutil-2.5.3-py2.py3-none-any.whl
Collecting numpy>=1.7.0 (from pandas)
Using cached numpy-1.11.1-cp35-cp35m-manylinux1_x86_64.whl
Collecting six>=1.5 (from python-dateutil>=2->pandas)
Using cached six-1.10.0-py2.py3-none-any.whl
Installing collected packages: pytz, six, python-dateutil, numpy, pandas
Successfully installed numpy-1.11.1 pandas-0.18.1 python-dateutil-2.5.3 pytz-2016.6.1 six-1.10.0
Finally, I list what's in the environment
(py3) $ pip list
numpy (1.11.1)
pandas (0.18.1)
pip (8.1.2)
python-dateutil (2.5.3)
pytz (2016.6.1)
setuptools (27.3.0)
six (1.10.0)
wheel (0.30.0a0)
workon, deactivate --
Finally, I will provide a few ideas on how to get around virtual environments
using the virtualenvwrapper tools. The main tool is
workon
-- for example try the following to
get a list of available virtual environments:
(py3) $ workon
py2
py3
(py3) $
As you can see, this lists the two environments that I created: py2 and py3. If I want to change to the py2 environment, it is as simple as:
(py3) $ workon py2
(py2) $ python --version
Python 2.7.12
I check the python version after the change, just to make sure! To close out
the current virtual environment the command
deactivate
is available:
(py2) $ deactivate
$
and, workon
still works to list and
start any existing virtual environment.
$ workon
py2
py3
mkvirtualenv, rmvirtualenv--
I already used mkvirtualenv
above to
create the py2 and py3 virtual environments. As you might guess, there is
also a rmvirtualenv
that
removes an existing virtual environment. An example would go like this:
$ workon
py2
py3
$ mkvirtualenv junk -p /usr/bin/python3
Running virtualenv with interpreter /usr/bin/python3
Using base prefix '/usr'
New python executable in /home/cstrelioff/virtenvs/junk/bin/python3
Also creating executable in /home/cstrelioff/virtenvs/junk/bin/python
Installing setuptools, pip, wheel...done.
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/junk/bin/predeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/junk/bin/postdeactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/junk/bin/preactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/junk/bin/postactivate
virtualenvwrapper.user_scripts creating /home/cstrelioff/virtenvs/junk/bin/get_env_details
(junk) $ workon
junk
py2
py3
(junk) $ deactivate
$ rmvirtualenv junk
Removing junk...
$ workon
py2
py3
$
Hopefully that all makes sense-- you should try it out.
wrapping up
So that's it for this post. I know that it's a lot to read, but that's the best overview of python (2.7+ and 3.5+) on Ubuntu 16.04 that I can give. If you find typos or mistakes please leave a comment. Also, as I said above, I would love to learn about other approaches-- please comment if you have one. Just one rule-- be nice!